UNIST: Unpaired Neural Implicit Shape Translation Network

Qimin Chen¹ Johannes Merz¹ Aditya Sanghi² Hooman Shayani² Ali Mahdavi-Amiri¹ Hao Zhang¹
¹Simon Fraser University ²Autodesk AI Lab

INTRODUCTION

• The first deep neural implicit model for unpaired shape-to-shape translation built on autoencoding neural implicit fields

• Translation network trained on latent grid representation with spatially correlated structure of the input shapes

* UNIST with Position-aware encoding (PE) / Regular encoding (RE)

METHOD

Autoencoding

• Learns to encode and decode shapes from both domains using latent grid

• Self-supervised with reconstruction loss

Translation

• Translates the code of source shape to that of target shape using GAN

• Turns the code of target shape to itself based on feature preserving loss

UNIST vs. RETRIVAL 2D

Solid → Dotted Chair → Table w Armrest → w/o Armrest

Regular → Italic Regular → Bold

G → R

AUTOENCODING

Hooman Shayani CycleGAN GANHopper

Input LOGAN CycleGAN GANHopper UNIST

INTRODUCTION

• The first deep neural implicit model for unpaired shape-to-shape translation built on autoencoding neural implicit fields

• Translation network trained on latent grid representation with spatially correlated structure of the input shapes

* UNIST with Position-aware encoding (PE) / Regular encoding (RE)